Подпишись и читай
самые интересные
статьи первым!

Какой цвет поглощает все цвета. Свет и цвет: основы основ Поглощает отблески и сохраняет цвет

Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение - это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).

Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.

На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр . Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет - всего лишь звено одной очень длинной электромагнитной волны.

От света к цвету и обратно

Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет - луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) - это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.

Рисунок 2 – Прохождение луча солнечного света через призму.

Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.

Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).

Проверим как это работает на практике. Возьмем 3 источника света (прожектора) - красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.

Рисунок 3 - Результат наложения красного, зеленого и синего цветов.

Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный - пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света - там мрак, там всё становится черным. Пример тому - иллюстрация 4.

Рисунок 4 – Отсутствие светового излучения

Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.

Рисунки 5 и 6– Зависимость параметров цвета от источника излучения

Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).

Цветовой тон (hue)

– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.

Яркость (Brightness)

– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии - нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный - алый - бордовый - бурый - черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».

Светлость (Lightness)

– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный - малиновый - розовый - бледно-розовый - белый.

Насыщенность (Saturation)

– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.

Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).

Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.

Рисунок 7 – Палитра цветов Adobe Photoshop

Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% - это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) - это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 - это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах , в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.

Цвет объектов

Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.

Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет . А когда объект отражает почти весь падающий свет, он принимает белый цвет . Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света , которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря - физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

- Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.

- Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.

- И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.

Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).

Рисунок 8 – Отражение зеленой волны спектра

Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.

Рисунок 9 – Отражение желтой волны спектра

Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.

Рисунок 10 – Отражение всех волн спектра

Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.

В следующей статье речь пойдет о новой характеристике цвета -

Цвета предметов . Почему лист бумаги мы видим белым, а листья растений зелеными? Почему предметы имеют различный цвет?

Цвет любого тела определяется его веществом, строением, внешними условиями и процессами, протекающими в нем. Этими разнообразными параметрами задают способность тела поглощать падающие на него лучи одного цвета (цвет определяется частотой или длиной волны света) и отражать лучи другого цвета.

Те лучи, которые отражаются, попадают в глаз человека и определяют цветовое восприятие.

Лист бумаги кажется белым, потому что он отражает белый свет. А так как белый свет состоит из фиолетового, синего, голубого, зеленого, желтого, оранжевого и красного, то белый предмет должен отражать все эти цвета.

Поэтому если на белую бумагу падает только красный свет, то бумага его отражает, и мы видим ее красного цвета.

Точно так же, если на белый предмет падает только зеленый свет, то предмет должен отражать зеленый свет и казаться зеленым.

Если бумагу покасить красной краской, изменится свойство поглощения света бумагой - теперь отражаться будут только красные лучи, в все остальные будут поглощаться краской. Теперь бумага будет казаться красной.

Листья деревьев, трава кажутся нам зелеными, потому что хлорофилл, содержащийся в них, поглощает красные, оранжевые, синие и фиолетовые цвета. В результате отражается от растений середина солнечного спектра - зеленый цвет.

Опыт подтверждает предположение, что цвет предмета есть не что иное, как цвет света, отраженного предметом.

Что будет, если красную книгу осветить зеленым светом?

Сначала предполагали, что зеленый свет книга должна превратить в красный: при освещении красной книги только одним зеленым светом этот зеленый свет должен превратиться в красный и отразиться так, что книга должна казаться красной.

Это противоречит эксперименту: вместо того чтобы казаться красной, в этом случае книга кажется черной.

Поскольку красная книга не превращает зеленый цвет в красный и не отражает зеленого света, красная книга должна поглощать зеленый свет, так что никакой свет не будет отражен.

Очевидно, что предмет, не отражающий никакого света, кажется черным. Далее, когда белый свет освещает красную книгу, книга должна отражать только красный свет и поглощать все другие цвета.

В действительности, красный предмет отражает немного оранжевый и немного фиолетовый цвета, потому что применяемые при производстве красных предметов краски никогда не бывают совершенно чистыми.

Точно так же зеленая книга будет отражать главным образом зеленый свет и поглощать все другие цвета, а голубая книга будет отражать главным образом голубой и поглощать все другие цвета.

Напомним, что красный, зеленый и голубой - первичные цвета . (О первичных и дополнительных цветах). С другой стороны, поскольку желтый свет состоит из смеси красного и зеленого, желтая книга должна отражать как красный, так и зеленый свет.

В заключение повторим, что цвет тела зависит от его способности по-разному поглощать, отражать и пропускать (если тело прозрачное) свет различных цветов.

Некоторые вещества, например прозрачное стекло и лед, не поглощают никакого цвета из состава белого света. Свет проходит сквозь оба эти вещества, и лишь небольшое количество света отражается от их поверхностей. Поэтому, оба эти вещества кажутся почти столь же прозрачными, что и сам воздух.

С другой стороны, снег и мыльная пена кажутся белыми. Далее, пена некоторых напитков, например пива, может казаться белой, несмотря на то, что жидкость, содержащая воздух в пузырьках, может иметь другой цвет.

По-видимому, эта пена бела потому, что пузырьки отражают свет от своих поверхностей так, что свет не проникает достаточно глубоко в каждый из них, чтобы быть поглощенным. Вследствие отражения от поверхностей мыльная пена и снег кажутся белыми, а не бесцветными, как лед и стекло.

Светофильтры

Если пропустить белый свет через обычное бесцветное прозрачное оконное стекло, то белый свет пройдет сквозь него. Если стекло красное, то свет красного конца спектра пройдет насквозь, а другие цвета будут поглощены или отфильтрованы .

Точно так же зеленое стекло или какой-нибудь другой зеленый светофильтр пропускает главным образом зеленую часть спектра, а голубой светофильтр пропускает главным образом голубой свет или голубую часть спектра.

Если приложить друг к другу два светофильтра различных цветов, то пройдут только те цвета, которые пропускаются обоими светофильтрами. Два светофильтра-красный и зеленый-при сложении их практически не пропустят никакого света.

Таким образом, в фотографии и цветной печати, применяя светофильтры, можно создавать желаемые цвета.

Театральные эффекты, создаваемые светом

Многие любопытные эффекты, которые мы наблюдаем на театральной сцене, являются простым применением тех принципов, с которыми мы только что познакомились.

Например, можно заставить почти совершенно исчезнуть фигуру в красном, находящуюся на черном фоне, если переключить свет с белого на соответствующий оттенок зеленого.

Красный цвет поглощает зеленый, так что ничего не отражается, и, следовательно, фигура кажется черной и сливается с фоном.

Лица, раскрашенные красной жирной краской или покрытые красными румянами, кажутся естественными в свете красного прожектора, но кажутся черными при освещении зеленым прожектором. Красный цвет поглотит зеленый, так что ничего не будет отражено.

Точно так же красные губы кажутся черными в зеленом или голубом свете танцевального зала.

Желтый костюм превратится в ярко-красный в малиновом свете. Малиновый костюм покажется голубым в лучах голубовато-зеленого прожектора.

Изучив поглощающие свойства различных красок, можно добиться множества различных других цветовых эффектов.

Кандидат химических наук О. БЕЛОКОНЕВА.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Представьте, что вы стоите на залитом солнцем лугу. Сколько вокруг ярких красок: зелёная трава, жёлтые одуванчики, красная земляника, сиренево-синие колокольчики! Но мир ярок и красочен только днём, в сумерках все предметы становятся одинаково серыми, а ночью и вовсе невидимыми. Именно свет позволяет увидеть окружающий мир во всём его разноцветном великолепии.

Главный источник света на Земле - Солнце, громадный раскалённый шар, в глубинах которого непрерывно идут ядерные реакции. Часть энергии этих реакций Солнце посылает нам в виде света.

Что же такое свет? Учёные спорили об этом на протяжении столетий. Одни считали, что свет - поток частиц. Другие проводили опыты, из которых с очевидностью следовало: свет ведёт себя как волна. Правы оказались и те и другие. Свет - это электромагнитное излучение, которое можно представить как бегущую волну. Волна создаётся колебаниями электрического и магнитного полей. Чем выше частота колебаний, тем большую энергию несёт излучение. И в то же время излучение можно рассматривать как поток частиц - фотонов. Пока нам важнее, что свет - это волна, хотя в конце концов придётся вспомнить и о фотонах.

Человеческий глаз (к сожалению, а может быть, и к счастью) способен воспринимать электромагнитное излучение только в очень узком диапазоне длин волн, от 380 до 740 нанометров. Этот видимый свет излучает фотосфера - относительно тонкая (менее 300км толщиной) оболочка Солнца. Если разложить «белый» солнечный свет по длинам волн, получится видимый спектр - хорошо известная всем радуга, в которой волны разной длины воспринимаются нами как разные цвета: от красного (620-740 нм) до фиолетового (380-450 нм). Излучение с длиной волны больше 740 нм (инфракрасный) и меньше 380-400 нм (ультрафиолетовый) для человеческого глаза невидимо. В сетчатке глаза есть специальные клетки - рецепторы, отвечающие за восприятие цвета. Они имеют коническую форму, поэтому их называют колбочками. У человека три типа колбочек: одни лучше всего воспринимают свет в сине-фиолетовой области, другие - в жёлто-зелёной, третьи - в красной.

Что же определяет цвет окружающих нас вещей? Для того чтобы наш глаз увидел какой-либо предмет, нужно, чтобы свет сначала попал на этот предмет, а уже затем на сетчатку. Мы видим предметы, потому что они отражают свет, и этот отражённый свет, пройдя через зрачок и хрусталик, попадает на сетчатку. Свет, поглощённый предметом, глаз, естественно, увидеть не может. Сажа, например, поглощает почти всё излучение и кажется нам чёрной. Снег, напротив, равномерно отражает почти весь падающий на него свет и потому выглядит белым. А что будет, если солнечный свет упадёт на выкрашенную синей краской стену? От неё отразятся только синие лучи, а остальные будут поглощены. Поэтому мы и воспринимаем цвет стены как синий, ведь у поглощённых лучей просто нет шанса попасть на сетчатку глаза.

Разные предметы, в зависимости от того, из какого вещества они сделаны (или какой краской покрашены), поглощают свет по-разному. Когда мы говорим: «Мячик красный», то имеем в виду, что отражённый от его поверхности свет воздействует только на те рецепторы сетчатки глаза, которые чувствительны к красному цвету. А это значит, что краска на поверхности мячика поглощает все световые лучи, кроме красных. Предмет сам по себе не имеет никакого цвета, цвет возникает при отражении от него электромагнитных волн видимого диапазона. Если вас попросили отгадать, какого цвета бумажка лежит в запечатанном чёрном конверте, вы нисколько не погрешите против истины, если ответите: «Никакого!». И если красную поверхность осветить зелёным светом, то она покажется чёрной, потому что зелёный свет не содержит лучей, отвечающих красному цвету. Чаще всего вещество поглощает излучение в разных частях видимого спектра. Молекула хлорофилла, например, поглощает свет в красной и голубой области, а отражённые волны дают зелёный цвет. Благодаря этому мы можем любоваться зеленью лесов и трав.

Почему одни вещества поглощают зелёный свет, а другие - красный? Это определяется структурой молекул, из которых вещество состоит. Взаимодействие вещества со световым излучением происходит таким образом, что за один приём одна молекула «заглатывает» только одну порцию излучения, иначе говоря, один квант света или фотон (вот нам и пригодилось представление о свете как о потоке частиц!). Энергия фотона напрямую связана с частотой излучения (чем выше энергия - тем больше частота). Поглотив фотон, молекула переходит на более высокий энергетический уровень. Энергия молекулы повышается не плавно, а скачком. Поэтому молекула поглощает не любые электромагнитные волны, а только те, которые подходят ей по величине «порции».

Вот и получается, что ни один предмет не окрашен сам по себе. Цвет возникает из выборочного поглощения веществом видимого света. А поскольку способных к поглощению веществ - и природных, и созданных химиками - в нашем мире великое множество, мир под Солнцем расцвечен яркими красками.

Частота колебаний ν, длина волны света λ и скорость света c связаны между собой простой формулой:

Cкорость света в вакууме постоянна (300млнм/с).

Длину волны света принято измерять в нанометрах.

1 нанометр (нм) - единица измерения длины, равная одной миллиардной доле метра (10 -9 м).

В одном миллиметре содержится миллион нанометров.

Частоту колебаний измеряют в герцах (Гц). 1 Гц - это одно колебание в секунду.

Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение - это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).

Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.

На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр . Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет - всего лишь звено одной очень длинной электромагнитной волны.

От света к цвету и обратно

Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет - луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) - это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.

Рисунок 2 – Прохождение луча солнечного света через призму.

Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.

Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).

Проверим как это работает на практике. Возьмем 3 источника света (прожектора) - красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.

Рисунок 3 - Результат наложения красного, зеленого и синего цветов.

Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный - пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света - там мрак, там всё становится черным. Пример тому - иллюстрация 4.

Рисунок 4 – Отсутствие светового излучения

Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.

Рисунки 5 и 6– Зависимость параметров цвета от источника излучения

Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).

Цветовой тон (hue)

– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.

Яркость (Brightness)

– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии - нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный - алый - бордовый - бурый - черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».

Светлость (Lightness)

– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный - малиновый - розовый - бледно-розовый - белый.

Насыщенность (Saturation)

– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.

Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).

Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.

Рисунок 7 – Палитра цветов Adobe Photoshop

Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% - это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) - это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 - это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах , в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.

Цвет объектов

Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.

Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет . А когда объект отражает почти весь падающий свет, он принимает белый цвет . Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света , которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря - физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

- Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.

- Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.

- И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.

Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).

Рисунок 8 – Отражение зеленой волны спектра

Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.

Рисунок 9 – Отражение желтой волны спектра

Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.

Рисунок 10 – Отражение всех волн спектра

Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.

В следующей статье речь пойдет о новой характеристике цвета -

Сам факт существования черного цвета объясняется электромагнитной теорией дисперсии, сформулированной еще в конце позапрошлого века. Согласно этой теории, окраска тех или иных предметов напрямую зависит от соотношения частоты колебаний молекул объекта и световой волны, попадающей на его поверхность. Если частоты совпадают - наблюдается резкое повышение амплитуды колебаний, энергия поглощается. Так, например, красный лист бумаги или любой другой непрозрачный предмет имеет такую окраску целиком из-за того, что лишь один свет оказался в числе отраженных, остальные же были успешно поглощены и совпали с резонансными частотами колебаний электронов.

Поглощая практически весь падающий на него свет, видимую часть спектра, черный цвет отражает весьма незначительную долю энергии и уходит в так называемый нагрев.

«Абсолютно черным» телом в физике называют тело, которое способно поглотить все падающее излучение. Если же предмет отражает все падающее на него излучение, человеческий глаз будет воспринимать его белым. В жизни наиболее черным веществом, способным поглотить примерно 99 процентов падающего света, является обыкновенная сажа.

Известная всем черная дыра, например, является предметом сверхсильного притяжения, в которую попадают и объекты, и фотоны света.

Мистика цвета

Немудрено, что черный цвет издревле считался символом траура, разрушения, смерти, хаоса. Но не все так страшно, как может представиться сначала, ведь черный одновременно несет в себе некую мистику, таинство, аристократизм, притягательность.
Считается, что с психологической точки зрения, черный цвет является как символом печали, горя и одиночества, так и несет в себе некий анархизм, борьбу, неповиновение судьбе.

Если рассматривать черный цвет со стороны приложения к нашей обыденной жизни, необходимо помнить о том, что, благодаря своим физическим особенностям, черный цвет уменьшает интерьерные пространства. Именно поэтому его не рекомендуют использовать для комнат с небольшой площадью и окраски потолков, но одновременно широко применяют в модной индустрии, ведь каждой даме известно, что черное платье или юбка способны скрасить изъяны фигуры и сделать ее более стройной и привлекательной. Предметы черного цвета быстро нагреваются, это необходимо помнить, выбирая оттенок будущего автомобиля или гардероб на предстоящее лето.

Включайся в дискуссию
Читайте также
Какую роль играет семья в воспитании ребенка
Как сделать красивый макияж карих
Новогодние шары из бумаги шаблоны для вырезания